
Coevolution for Problem Simpli�cation

Gary L. Haith�

Recom Technologies

Computational Sciences Division

NASA Ames Research Center

Silvano P. Colombano

Computational Sciences Division

NASA Ames Research Center

Jason D. Lohn

Caelum Research Corporation

Computational Sciences Division

NASA Ames Research Center

Dimitris Stassinopoulos

National Research Council

Computational Sciences Division

NASA Ames Research Center

Abstract

This paper explores a coevolutionary ap-

proach applicable to di�cult problems with

limited failure/success performance feedback.

Like familiar \predator-prey" frameworks

this algorithm evolves two populations of in-

dividuals { the solutions (predators) and the

problems (prey). The approach extends pre-

vious work by rewarding only the problems

that match their di�culty to the level of so-

lution competence. In complex problem do-

mains with limited feedback, this \tractabil-

ity constraint" helps provide an adaptive �t-

ness gradient that e�ectively di�erentiates

the candidate solutions. The algorithm gen-

erates selective pressure toward the evolu-

tion of increasingly competent solutions by

rewarding solution generality and uniqueness

and problem tractability and di�culty. Rel-

ative (inverse-�tness) and absolute (static

objective function) approaches to evaluating

problem di�culty are explored and discussed.

On a simple control task, this coevolutionary

algorithm was found to have signi�cant ad-

vantages over a genetic algorithm with either

a static �tness function or a �tness function

that changes on a hand-tuned schedule.

�Mail Stop 269-3, Mountain View, CA 94035-1000
e-mail: haith@ptolemy.arc.nasa.gov

1 Theoretical Background

Traditional evolutionary algorithms evaluate the �t-

ness of an individual by evaluating its ability to mini-

mize an objective function which is typically static and

independent of the evolutionary algorithm. For exam-

ple, if the goal is to evolve a posture controller for a

robot, the �tness of an individual controller could be

its success in minimizing movement in the robot body

under a gravity load. In coevolutionary algorithms,

the �tness of an individual in the evolving popula-

tion(s) depends on interactions with other individu-

als in the same generation. The problems (e.g. the

forces on the robot) faced by individuals in a coevolu-

tionary algorithm are dynamic and are shaped by the

algorithm itself. Extending the robot example, the

situations that a robot faces (e.g. forces on the robot

like gravity) could be coevolving with the controllers

such that the set of situations on which controllers are

evaluated changes from generation to generation.

1.1 Coevolution: Competition and

Cooperation

A growing body of research explores coevolutionary

approaches that capitalize on this dynamic quality (for

review, see Paredis, 1998) . This coevolutionary work

has largely concentrated on competitive interactions.

The interactions can be between individuals that com-

pete in a symmetric game-like context (Pollack et al.,

1996; Sims, 1994; Rosin, 1997) or between popula-

tions of di�erent types of individuals that compete in

predator/prey type relationships (Hillis, 1991; Paredis,

1994b; Paredis, 1994a; Cli� & Miller, 1996; Juille &

Pollack, 1998; Rosin, 1997; Rosin & Belew, 1996). In

these cases, individuals are rewarded if they defeat the

individuals with which they compete. These interac-

tions can support \arms-races" in which the individu-

als force each other to become increasingly competent.

A few studies have investigated the role of coopera-

tion and how it can help solve some problems endemic

to evolutionary methods, like the di�culty of choos-

ing an appropriate encoding for the individuals (Pare-

dis, 1995) and the di�culty of decomposing composite

problems (Jong & Potter, 1995). Other studies have

found that a balance of cooperation and competition

is necessary to prevent evolutionary algorithms from

getting trapped in local minima, or \Mediocre Stable

States" (Ficici, 1995).

1.2 The Current Approach

The approach outlined in this paper has features of

both competitive and cooperative coevolutionary ap-

proaches. The algorithm tries to ensure a tractable

learning gradient for the solutions by rewarding only

those problems on which at least one solution was suc-

cessful. The �tness of these tractable problems is pro-

portional to their absolute and/or relative di�culty |

providing pressure for the solutions to become more

generally competent. In practice, this requirement

generates an initial simpli�cation and gradual increase

in problem di�culty over evolution. The aim is to se-

lect for problems that are on the edge of what is solv-

able by the current population of solutions, ensuring a

useful �tness gradient throughout evolution.

This requirement that the problem must be tractable

has been relatively unstressed in the literature, with

a couple notable exceptions. Rosin (1997) suggests

a mechanism (the \Phantom Parasite") that rewards

problems that are solvable by at least one solution.

This mechanism will tend to allow easy problems to

survive in a population of very di�cult problems.

Juille and Pollack (1998) use a domain speci�c ap-

proach to selecting for problem tractability by reward-

ing problems that tend to be easier by an objective

measure.

Dealing with problem tractability is not an issue in

problem domains where the problems provide partial

�tness measures (Hillis, 1991; Ficici, 1995) or have a

baseline success rate that is fairly high, akin to a mul-

tiple choice problem (Juille & Pollack, 1998; Paredis,

1994b). In these cases, there is always a �tness gradi-

ent for the solutions to follow in the form of the number

of problems solved. However, in many real problem

domains the performance of a set of randomly chosen

solutions on a randomly chosen problem would be so

low that an observer or �tness function would be un-

able to di�erentiate between the performance of the

candidate solutions.

1.3 Di�cult Tasks

Many problems require a surprisingly high level of ex-

pertise to even be approached. Faced with such a prob-

lem a naive learner must be given some bias, or a struc-

tured learning environment (termed a \gradient engi-

neered �tness landscape" by Ficci and Pollack, 1998)

to have a hope of mastering the task. In developmen-

tal terms, the current task must be kept in the \Zone

of Proximal Development" (Vygotsky, 1986), or ZPD,

in order to be tractable and useful to the learner. If

the problem is outside the ZPD, then the learner will

be unable to gain competence through experience with

the task. In evolutionary terms, a �tness function that

is too far beyond the competency of the individuals will

fail to usefully di�erentiate between the individuals,

and evolution will be unable to select for competency.

The challenge of staying within the ZPD is especially

relevant in di�cult reinforcement learning problems.

In these problems: there is an absolute measure of

performance (as opposed to a game with relative per-

formance), the measure of performance is mainly lim-

ited to success/failure, and the baseline probability of

success for a solution given a typical problem is very

low. For example, the control or design of a complex

structure like an automobile engine depends on many

pieces coming together in just the right way before any

success at all is achieved. This seemingly impossible

design task has only been tractable because the task

itself has evolved over history. Originally the task was

simply to translate heat into rotational energy. Details

that are crucial to current engines like gearing, inter-

nal combustion, carburation, etc. were only added as

each progressively more complex design was realized.

In this paper we explore some mechanisms that could

help make complex problems tractable to evolutionary

algorithms by providing a gradient of problem di�-

culty/complexity over evolution.

2 Problem/Control Framework: 2D
Free-Space Vehicle

This work uses a relatively simple simulation frame-

work that allows for quick exploration of coevolu-

tionary mechanisms. The problem is to control the

thrusters on a craft oating in free space such that the

craft goes to a given point (the "origin") and comes to

rest within a given period of time (1 sec, 5 time-steps).

The movement of the craft is limited to 2 dimensions,

and is simulated approximately using discreet time-

steps. At the end of the time period, a solution "suc-

ceeds" if the craft is resting (within some error) at the

origin at the end of the time period | otherwise it

"fails". This method of evaluation converts the avail-

able continuous error signals to a reinforcement learn-

ing signal.

Problem di�culty can be easily parameterized in this

framework. An optimal solution in this framework

would be able to steer the craft toward the origin from

any position and initial velocity and would learn to

stop at the origin within the time period. Because so-

lution performance is evaluated over a limited period

of time, a large initial distance and velocity require the

solution to generate strong and accurate thruster �r-

ing. In contrast, small initial distances and velocities

can be successfully navigated with weak and relatively

inaccurate thruster �ring (see Sec. 5.1 for limitations

of this interpretation). In general, problem di�culty

is proportional to the craft's initial distance (Dp) from

the origin and initial velocity (Dv).

Candidate solutions in this simulation are simple linear

networks where the change in the XY thrust at each

the next time step is a weighted sum of the current XY

thrust, velocity, and position.1 A candidate solution

is a set of weights for this network.

3 Evolutionary Framework:
Coevolutionary GA

Each problem is described by 2 scalars (see Fig. 1):

initial distance from the origin (Dp), and initial ve-

locity (Dv). The actual position and velocity of each

problem in each generation is chosen randomly from

the points on the circles described by the two problem

scalars, thus at each generation a problem describes

an initial XY position and velocity. In this way the

di�culty of the problems (the magnitude of the prob-

lem scalars) can be preserved or changed from gen-

eration to generation, while the speci�c problems are

randomly sampled each generation.

Each generation every solution is evaluated on every

problem. The weights of the solutions/networks are

evolved using a genetic algorithm.2 In simulations,

an initial population (N = 50) of solutions is cho-

1Some simulations were run using a feed-forward neu-
ral network architecture (2 layer, 2 hidden units with a
hyperbolic transfer function). These simulations yielded
qualitatively similar results.

2Although in this case the control networks could be
trained using backpropogation or a similar neural network
training algorithm, a genetic algorithm was used to �nd ef-
fective weights so as to explore coevolutionary mechanisms.

Dp

Dv

Figure 1: The �gure represents the possible initialization
conditions represented by a given problem (Dp, Dv). The
square at the center of the large circle is the origin. Dp

is the di�culty/distance of the initial position, Dv is the
di�culty/magnitude of the initial velocity. The actual ini-
tial con�guration, a starting position in the case of Dp (the
star) and a velocity vector in the case of Dv, is chosen ran-
domly from the set of points on the circles. The dotted
circles represent other possible starting positions (dotted
stars) with their associated sets of possible velocity vec-
tors.

sen at random with relatively small weights ([-.05,

.05]). These solutions are then evaluated on the set

of problems (N = 50) present that generation. The

genomes of the solutions are lists of the 12 oating

point weights in the network. Each generation new

candidate solutions are generated by probabilistically

choosing parents (based on their sigma-scaled �tness,

Mitchell, 1996), re-combining them in pairs via 2 point

cross-over, and with some probability (%10 mutation

rate) mutating each weight of the new solutions by

adding a random number (selected from [-1,1]). The

best 5% of the solutions at each generation are repli-

cated exactly in the following generation.

The focus of this paper is on di�erent methods of

choosing the evaluation problems (initial conditions).

This work compares three methods of generating prob-

lem di�culties (Dp's and Dv's) for the sample prob-

lems at each generation: the standard evolutionary ap-

proach, the gradient/developmental approach, and the

coevolutionary approach (with 2 particular instantia-

tions). Note that in all methods the speci�c problems

(starting position and velocity) were randomly gener-

ated by selecting the starting point and velocity vector

from the circles described by Dp and Dv. Even if the

problem di�culties were identical across generations,

the speci�c problems would be di�erent.

3.1 Standard Evolutionary Approach

The �rst method is to randomly select each (Dp, Dv)

from a uniform distribution across [0,Dm], where Dm

is the maximum problem di�culty (typically 50). In

this method the average problem di�culty is constant

at Dm
2

(see Fig. 2, heavy line). This �rst method is

meant to reect the most common/standard practice

where throughout evolution the solutions are evalu-

ated on the full set of possible problems, or a fully

complex target problem.

3.2 Gradient/Developmental Approach

The second method is inspired by the developmental

considerations discussed above. This method presents

an increasingly di�cult set of problems to the popula-

tion of solutions. The di�culties (Dp, Dv) at each gen-

eration are chosen from a uniform distribution across

[0,Dm �G(t)], where G(t) is a monotonically increas-

ing function of generation number (t). Typically G(t)

is a simple linear increase from 0 at generation 1 to

Dm at the last generation (see Fig. 2, medium lines).

In this method the average problem di�culty increases

monotonically over training. This second method re-

ects the developmental theory (Elman, 1991; New-

port, 1988) and intuitive heuristic, that hard problems

are easier to learn if problem complexity starts o� low

and increases gradually over training as the compe-

tency of the solution improves.

3.3 Coevolutionary Approach

The third method coevolves the di�culties of the eval-

uation problems and the the weights of the candidate

solutions. Like the solutions, problem di�culties are

evolved with selection, cross-over and mutation. The

average problem di�culty is under the control of the

evolutionary algorithm in this method. A central fo-

cus of this paper is to determine if this coevolutionary

algorithm can discover and optimize the hand-coded

gradient/developmental method described in the pre-

vious section (for actual behavior see Fig. 2, �ne lines).

We explored two methods of evaluating the raw �t-

nesses of the solutions and problems: absolute and

relative. In the absolute method, the raw �tness of

a solution (Fp) is the sum of the di�culties of the

problems that it completed successfully, where N is

the number of problems, and Sij is 1 if problem i is

successfully solved by solution j and 0 otherwise (see

Eq. 1).

Fpj =
1

2

NX

i=1

(Di
v +Di

p)� Sij (1)

The absolute raw �tness of a problem is its di�-

culty (1
2
(Dv + Dp)) if it was completed successfully

by at least one solution and 0 otherwise, satisfying the

tractability constraint.

The relative method is similar to the \inverse-�tness",

or \competitive �tness sharing" method used by previ-

ous researchers (Paredis, 1998; Juille & Pollack, 1998;

Rosin, 1997; Rosin & Belew, 1996). Fitness of the

solutions is proportional to the number of problems

that they successfully solve, with the reward for each

problem being inversely proportional to the number of

solutions that solved it (see Eq. 2) | a rough measure

of how \easy" it is.

Fpj =

NX

i=1

SijPN

j=1 S
i
j

(2)

The �tness of each problem is inversely proportional

to the number of solutions that complete it success-

fully, with a tractability constraint. A problem not

successfully completed by any solution gets zero �t-

ness (instead of the maximum �tness in the traditional

\inverse-�tness" approach).

Fsi =
T i

PN

j=1 S
i
j

(3)

Here T i (the tractability of problem i) is 1 if any of

the solutions successfully completed problem i and 0

otherwise.

4 Results

Two measures are displayed for each of the 3 evolu-

tionary methods. Displayed results are the average

of 10 runs in each method, with the same parameters

in all runs.3 The �rst reports the mean di�culty of

the problems (1

2N

PN

i=0 (D
i
v +Di

p)). The second is a

measure of the performance of the most �t solution.

In order to get a standardized measure of the solu-

tion performance, the solution with the highest �tness

in each generation was evaluated on a standard set of

3Simulation Parameters: 50 problems, 50 solutions, 2
seconds of controller time, time step of .2 sec, 250 genera-
tions total, linear solution networks, .05 elitism, .1 muta-
tion rate, and mutation step size is randomly drawn from
[�1; 1].

625 initial conditions selected so as to sample a regular

grid of initial positions and velocities.

Pj = 100� (1�

PT

i=1 (D
i
pj +Di

vj)PT

i=1 (D
i
p0 +Di

v0)
) (4)

The performance of the highest �tness network (Pj)

was evaluated by summing the errors in the �nal po-

sition (Dpj) and velocity (Dvj) reached from the test

set of initial conditions (indexed by i, T total) with

thrusters controlled by the highest �tness network

(network j). This sum was then compared to the

�nal errors in position and velocity reached with no

thrusters �ring Dp0 and Dv0, and the proportion was

normalized such that perfect performance would cor-

respond to a performance score of 100 (see Eq. 4). It

should be noted that the performance score is negative

if the given solution is worse (i.e. results in largerDpj 's

and Dvj 's) than the 0 thrust case. In fact, a nega-

tive performance score is overwhelmingly likely given a

randomly generated solution (only 11/1000 randomly

generated solutions had a positive performance score,

and the average performance was -5000).

Figure 2: Each line shows the problem di�culty at each
generation for a given approach. Each line is averaged over
all the problems in that generation and over 10 runs. 50 is
the maximum initial di�culty in the coevolutionary runs,
�nal di�culty in the gradient runs, and maximum di�-
culty throughout the standard run. The heavy line is the
standard approach. The �ne lines are coevolutionary ap-
proaches with problem di�culty evaluated absolutely (dot-
ted) and relatively (solid). The medium lines are hand-
tuned gradient approaches with a fast rise in task di�culty
(dotted) and a slow rise in task di�culty (solid). See text
for details.

Figure 3: Each line shows the performance of the best so-
lution at each generation for a given approach. Each line
is the average of 10 runs, and 100 is the maximum per-
formance. The solid heavy line is the standard approach.
The �ne lines are coevolutionary approaches with prob-
lem di�culty evaluated absolutely (dotted) and relatively
(solid). The medium lines are hand-tuned gradient ap-
proaches with a fast rise in task di�culty (dotted) and a
slow rise in task di�culty (solid) | see Fig. 2. The main
parameters were held constant in all runs. See text for
details.

4.1 The Standard Approach

In some parameter regimes, the standard case (select-

ing Dp and Dv from a uniform distribution across

[0,Dm] throughout evolution) generally failed to �nd

a generally successful solution (See Fig. 3, heavy line)

over the course of evolution. The negative performance

of the solutions is probably due to \fortuitous" initial-

ization/solution matches, where the solution is unable

to generalize its successful performance to the test set

of initializations/problems. For example, a solution

that continually �res the left thruster might be suc-

cessful in a generation where one of the initial positions

is just o� to the left, but it (and its o�spring) will be

unable to generalize that success to another random

sample of problems. In these 10 runs the standard al-

gorithm came up with a relatively poor solution with

an average performance of 15.

4.2 The Gradient/Developmental Approach

The evolution of competent solutions is made much

more robust by gradually increasing the average prob-

lem di�culty over evolution (see Fig. 3, solid medium

line). The general success of this approach is due to

the fact that it can ensure that the problems are al-

ways simple enough for some of the solutions to solve,

enabling evolution to get a foothold in di�erentiating

solution �tness based on performance. Only solutions

that have been selected for many generations face dif-

�cult problems late in a given evolutionary run.

This approach has the shortcoming that the rate of

problem di�culty increase must be tuned to the given

problem and rate of competency growth in the solu-

tions. If the di�culty of the problems is increased

too quickly, then the success of some solutions is not

overwhelmingly likely and, as in the standard case,

the run may fail to �nd a generally successful solution

(see Fig. 3, dotted medium line). In the case of a too-

steep gradient, the gradient approach yielded a �nal

controller with a �tness of only 25. Generally speak-

ing, if the di�culty of the problem is increased too

slowly, then little evolutionary pressure is put on the

solutions to have general competency and suboptimal

solutions will result (but see Sec. 5.1 for discussion of

this problem as an exception).

4.3 The Coevolutionary Approach

The coevolutionary method retains advantages of the

gradient/developmental approach, but avoids the ne-

cessity of selecting the schedule of increasing problem

di�culty at an arbitrary rate (See Fig. 3, �ne lines).

The coevolutionary approach has the advantage of au-

tomatically adjusting problem di�culty to match solu-

tion competence (see Fig. 4). Even though the average

problem di�culty starts o� large, easy problems have

much higher �tness early in evolution because they are

the only problems that can be successfully completed

by relatively incompetent solutions. Easy problems

tend to take over the population of problems just after

a tractable problem is found, (see Fig. 4) while the so-

lutions are still relatively incompetent. Problems tend

to get harder over evolution because they are rewarded

for being solvable only by a few solutions (relative) or

for being more di�cult by some absolute measure (ab-

solute). Any problem that increases in di�culty too

quickly will be penalized because it will not be suc-

cessfully completed by any of the solutions.

5 Discussion

This paper presents an approach to using coevolution

to simplify complex problems. By rewarding a coe-

volved population of problems for being at the edge of

what is currently solvable by the population of solu-

tions, the method generates a usable �tness gradient

for the solutions while encouraging general solution

competency at di�cult problems. This approach takes

some small steps toward making coevolutionary algo-

rithms more applicable to a di�cult and important

Figure 4: The average di�culty of the population of prob-
lems during a representative run (taken from the 10 aver-
aged runs) using coevolution with selection for absolute
problem di�culty. Note the random search, followed by
problem simpli�cation and a gradual increase in problem
di�culty. See text for details.

class of problems. The results that were presented

demonstrate that, in some domains, the approach can

be more e�ective than a traditional evolutionary ap-

proach and more exible than a hand-coded approach.

5.1 Limitations

This work has some limitations that are important for

proper interpretation.

First, initial success in the coevolutionary and stan-

dard approaches is simply probabilistic. Even with the

tuned parameters in the simulations reported above,

several generations often pass without any success-

ful solution/problem pairings. Indeed this di�culty

was explicitly chosen, because if the problem is made

too simple (e.g. by increasing the error threshold for

successful performance) than there is a su�cient �t-

ness gradient for the standard approach to perform as

well as the coevolutionary approach. During these un-

successful generations, the algorithm does a random

search for solvable problems, and all but the elite so-

lutions undergo random evolution or genetic drift. In

a very di�cult problem domain, randomly generated

solutions will almost never successfully solve randomly

generated tasks. This issue could be addressed by

seeding the initial population with simple problems

that are thought to be applicable to the fully complex

problem, thus ensuring some success in even a random

population of solutions.

Second, the algorithm here involves problem simpli�-

cation instead of problem decomposition. In the case

of simpli�cation it is straightforward to generate esti-

mates of problem di�culty or problem match to a tar-

get objective function, therefore is it easy to evaluate

problems on their absolute di�culty. In problems that

are compositional, hierarchical, or otherwise complex

this assignment of absolute di�culty is not as straight-

forward. Unfortunately, it is also hard to get a useful

measure of the intrinsic di�culty in complex problems.

The issue is that an evolving problem must be di�cult

in the same way as the ultimate target problem, and

usually there are many other ways to be di�cult. The

challenge is to �nd a problem representation that al-

lows simple evaluation of the similarity or applicability

of candidate problems to the target problem. Such a

representation allows an absolute di�culty measure to

help guide the explorations generated by the intrinsic

di�culty measure.

Third, the fact that this domain provides only for

problem simpli�cation ensures that solutions that suc-

ceed at simple problems will tend to succeed at hard

problems as well. The most vivid illustration of this

fact is that runs with the gradient/developmental ap-

proach and with a very low maximum problem di�-

culty (Dm) evolve a solution with competence nearly

matching a gradient/developmental approach with a

relatively high Dm. The result is that there is rela-

tively little intrinsic pressure for the problems to be-

come more di�cult. This fact limits the usefulness of

this problem domain for study of these coevolutionary

mechanisms.

5.2 Future work

We plan to test this coevolutionary approach in prob-

lem domains that avoid the limitations mentioned

above. One candidate domain is coevolving analog

�lters and their target frequency response. Previous

work on the evolution of simple analog �lters has found

the e�ciency of evolutionary search to be highly de-

pendent on a proper choice of �tness functions (Lohn &

Colombano, 1998). In addition, somewhat complex �l-

ters, like passive cross-over �lters are relatively di�cult

to design and optimize by hand. This well-explored do-

main should allow us to test the ability of coevolution

to provide a usable gradient through simpli�cation and

decomposition.

A second candidate domain coevolving a gait con-

troller for a walking robot. Previous work has found

that decomposing a locomotion problem into behav-

iors provides a many fold speed-up in controller evo-

lution (Gruau, 1996). The chore of deciding how to

usefully decompose a robotic control task is generally

not straightforward and thus far has depended on the

insights and patience of a human programmer. We

plan to use a coevolutionary approach to evolve a con-

troller for a semi-rigid walking robot under current

development at NASA Ames Research Center.

Acknowledgments

References

Cli�, D., & Miller, G. F. 1996. Co-evolution of pursuit

and evasion ii: Simulation methods and results.

Pages 506{515 of: Maes, P., Mataric, M., Meyer,

J. A., Pollack, J., & Wilson, S. (eds), From ani-

mals to animats 4: Proceedings of the fourth in-

ternational conference on simulation of adaptive

behavior (sab96). MIT Press Bradford Books.

Elman, Je�rey L. 1991. Incremental learning, or the

importance of starting small. Tech. rept. 9101.

Center for Research in Language, University of

California, San Diego, CA.

Ficici, Sevan G. 1995. Challenges in coevolutionary

learning: Arms-race dynamics, open-endedness,

and mediocre stable states.

Gruau, F. 1996. Cellular encoding for interactive

robotics. Tech. rept. Sussex University.

Hillis, Daniel W. 1991. Co-evolving parasites im-

prove simulated evolution as an optimization pro-

cedure. Pages 313{324 of: Langton, C., Taylor,

C., Farmer, J. D., & Rasmussen, S. (eds), Arti�-

cial life 2, vol. X. Redwood City, CA: Addison-

Wesley.

Jong, Kenneth A. De, & Potter, Mitchell A. 1995.

Evolving complex structures via cooperative co-

evolution. Pages 307{317 of: Proceedings of

the fourth annual conference on evolutionary pro-

gramming. MIT Press.

Juille, Hugues, & Pollack, Jordan B. 1998 (July 22-

25). Coevolving the \ideal" trainer: Application

to the discovery of cellular automata rules. In:

Proceedings of the third annual genetic program-

ming conference (gp-98).

Lohn, Jason D., & Colombano, Silvano P. 1998. Auto-

mated analog circuit synthesis using a linear rep-

resentation. Pages 125{133 of: Proceedings of the

second international conference on evolvable sys-

tems: From biology to hardware. Berlin: Springer-

Verlag.

Mitchell, Melanie. 1996. An introduction to genetic

algorithms. Cambridge, MA: MIT Press.

Newport, Elissa L. 1988. Constraints on learning and

their role in language acquisition: Studies of the

acquisition of american sign language. Language

sciences, 10, Number 1, 147{172.

Paredis, Jan. 1994a. Coevolutionary constraint satis-

faction. Pages 46{55 of: Proceedings of the third

international conference on parallel problem solv-

ing from nature, vol. 866. Springer-Verlag.

Paredis, Jan. 1994b. Steps towards co-evolutionary

classi�cation neural networks. Pages 102{108 of:

Brooks, R., & Maes, P. (eds), Arti�cial lie iv.

Cambridge, MA: MIT Press.

Paredis, Jan. 1995. The symbiotic evolution of solu-

tions and their representations. Pages 359{365

of: Eshelman, L. (ed), Proceedings of the sixth in-

ternational conference on genetic algorithms. San

Mateo, CA: Morgan Kaufmann.

Paredis, Jan. 1998. The handbook of evolutionary com-

putation. Oxford University Press. Chap. Coevo-

lutionary Algorithms.

Pollack, J., Blair, A., & Land, M. 1996. Coevolution

of a backgammon player. In: Langton, C. (ed),

Proceedings arti�cial life 5. MIT Press.

Rosin, Christopher D. 1997. Coevolutionary search

among adversaries. Ph.D. thesis, University of

California, San Diego.

Rosin, Christopher D., & Belew, Richard K. 1996. New

methods for competitive coevolution. Tech. rept.

CS96-491. Department of Computer Science and

Engineering, University of California, San Diego.

Sims, Karl. 1994. Evolving 3d morphology and behav-

ior by competition. Pages 28{39 of: Brooks, R.,

& P.Maes (eds), Arti�cial life 4 proceedings. MIT

Press.

Vygotsky, Lev Semonovich. 1986. Thought and lan-

guage. Cambridge, Mass.: MIT Press.

